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Abstract. We study the spin 112 Heisenberg model on the 'Railroad Trestlc'geom- 
etry of two lines of close packed acorns. Our motivation is to try to establish a link 
between triangular geometries and the Haldane gap, The classical limit of the model 
involves incommensurate spiralling, but there is a collinear state nearby in energy. 
W e  believe that quantum fluctuations stabilize the symmetry a s d a t e d  with the 
collinear state. We give numerical evidence to suggest that the state stabilized has a 
spontaneously broken symmetry with similar short range comebtiorw to those found 
in the spin 1 chain, together with e gap to excitations. 

1. Introduction 

The Heisenberg model is probably the simplest isotropic model of magnetism. For a 
long period this model was used primarily as a description for magnetically ordered 
materials and their low temperature behaviour. The relevant magnetic limit of the 
model is the high-spin classical limit. More recently the quantum limit of low spin, 
mainly spin 112, has come under closer scrutiny. Quantum fluctuations of the spins 
weaken the magnetic order and for some geometries the magnetic order can be com- 
pletely destroyed and replaced with a strange type of paramagnetic phase. It is to 
achieve an understanding of this paramagnetic phase which motivates most studies 
including our own. 

In many compounds atoms exhibit a unique valence state with a non-zero total 
spin: local moments. Experimentally it is observed that a h "  always these local 
atomic moments order if the temperature is lowered sufficiently. Interest is aroused 
when for some reason the local moments do not order. The compounds of most 
interest are heavy fermions [l] and perovskiie superconductors [2], both of which have 
local moments which do not order much at low temperatures in the most interesting 
metallic phases, although there are reports of smallordered moments in heavy fermion 
systems [3]. Although the most probable physical cause of the paramagnetism is 
charge motion in these systems, the state stabilized at low temperatures may well 
have similar characteristics to those stabilized by quantum fluctuations. There are 
also some insulators with local moments and frustrated geometries which show no 
magnetic order [4]. These systems can be interpreted directly. 

Although concrete experimental examples are few and far between, there are sev- 
eral theoretical geometries which can be solved well enough to prove the absence of 
long range order. So far we have: 
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(i) The spin 112 chain with nearest neighbour interactions which has no long 
range order although it does have long range correlations with power law decay and 
excitations at infinitesimal energies [5]. 

(ii) The spin 1 chain with nearest neighbour interactions which has no  long range 
order, an exponential decay of spinspin correlations together with a gap to excitations: 
the Haldane gap [6]. 

(iii) The spin 112 chain with next nearest neighbour interactions precisely half the 
size of the nearest neighbour interactions. This system exhibits very short range cor- 
relations with spin-spin correlations vanishing at next nearest neighbours and beyond, 
combined with a gap to excitations [7]. 

(iv) The spin 112 ‘Sawtooth’ geometry which has very similar behaviour to the 
previous example [SI. 

(v) Spin 112 ‘Diamond’ geometries which also have short range spinspin correla- 
tions and a gap to excitations [9]. 

In this article we will analyse the ‘Railroad Trestle’ geometry, depicted in figure 1, 
and previously studied in the context of the triangular lattice and the so-called res- 
onating valence bond (WE) state [lo]. Our motivation is to try to suggest that the 
solution to the ‘Railroad Trestle’ geometry has more in common with the spin 1 chain, 
yielding further insight into the Haldane gap, than it does with the triangular lattice 
which has been the previous motivation [lo]. 

Figure 1. The Railrond Trestle geometry. W e  will  refer to the ‘zig-zag’ bonds as 
nearet neighbour bonds in the text, although all the depicted bands are assumed of 
equal strength. 

The reason that such a connection might be plausible can be found from a study of 
figure 2. IC the dotted and full lines denote primed and unprimed bonds respectively 
and we denote nearest neighbour, next nearest neighbour and third nearest neighbour 
interactions by J , ,  J ,  and J3 respectively, then the previously mentioned soluble 
geometries correspond to: 

J ,  =uJ J;  = Jz = J ; =  J3 = J (ii) 
(iii) J ,  = JI = J J2 = J i  = 512 

Railroad J ,  = J;  = J2 = J i  = J ~ Ja = JA = 0 
It is clear that the only difference between the spin 1 chain and the Railroad 

Trestle geometry is the single third nearest neighbour bond, J3. It is also clear that 
the only difference between the Sawtooth and ihe Railroad Trestle geometry is the 
single second nearest neighbour bond, J i .  In order to t ry  to make a connection between 
these different geometries we will study the families of systems where these bonds are 
allowed to vary continuously between the relevant geometries. 

In section 2 we discuss the classical limit and in section 3 we look at some numerical 
work on the quantum spin 112 system. In section 4 we conclude. 

J ,  = JI = J J ,  = J ;  = J3 = J A  = 0 
J;=O and a 4 1.4 
J3 = JA = 0 

(i) 

(iv) J ,  = J ;  = J z  = J J ;  = J3 = Jj = 0 
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Figure 2. A generalized geometry which simullammusly describes: the Sawtooth 
the Railroad and both the spin 1 and spin 1/2 &tu. The shortest 'zig-zag' bonds 
are called first nearest neighbour, the edge bonds are edled second nearest neighbour 
and the long bonds are called third ne-t neighhour in the text. 

The behaviour of the classical Heisenberg model is relatively straightforward: spins 
order antiferromagnetically. The ground state usually has long range magnetic order 
and fluctuations in this order constitute excitations. Our aim is to try to understand 
how quantum mechanics might modify this simple picture. For bipartite lattices we 
believe that quantum effects are minor and yield a small reduction in the ordered m+ 
ment; the basic physical picture remains unchanged. A little more interest is aroused 
in topologically frustrated geometries. For this case two new types of states are some- 
times found at the classical level: spiralling solutions, which use two spin dimensions, 
and non-trivially degenerate solutions. The role of quantum mechanics seems more 
interesting for these situations. 

Quantum fluctuations prefer neighbouring spins to be in relative spin singlets: 
spins fluctuate in absolute orientation, but not in relative orientation. This desire 
to break up into independent singlets can have two major effects. Firstly, spiralling 
solutions can become unfavourable and collinear states can be stabilized. Secondly, 
the spins can break up into independent regions with the absolute orientation of the 
order in a region fluctuating, but the spins locally being collinear in a region. This 
second effect is associated with a loss of long range magnetic order. The present 
geometry is a concrete manifestation of these general ideas at  work. 

2. The classical limit 

The first task in any quantum mechanical analysis of the Heisenberg model is to 
solve the corresponding classical limit in order to establish the types of long range 
coherence to be expected. The resulting long range ordered solutions act as useful 
interpretational aids when the quantum analogue is studied. I t  is quite usual to 
find the same basic symmetry of solution together with short range remnants of the 
classical solution in the quantum ground state. It is situations where the ground state 
is completely different which are the interesting cases. 

Since we are trying to connect the different types of geometry, we will analyse 
two one parameter families of models. Firstly, when comparing the spin 1 chain 
with the Railroad, there is only one missing bond, namely J3,  and so the natural 
parameter is the ratio of this bond to the other bonds, X = J J J ,  which is allowed 
to vary between unity, corresponding to the spin 1 chain, and zero, corresponding to 
the Railroad. Secondly, when comparing the Sawtooth with the Railroad, once again 
there is a single missing bond, this time J;,  and so the natural parameter is the ratio 
of this bond to the other bonds, IC = J ; / J ,  which is allowed to vary between zero, 
corresponding to the Sawtooth, and unity, corresponding l o  the Railroad. 
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2.1. The Railmad versus ihe spin 1 chain 

The spin 1 chain has two a t o m  per unit cell, and so we must solve the family of 
models allowing two independent spin degrees of freedom. This type of problem is by 
no means trivial in general, but for the present case we find that only one wavevector 
and its reciprocal are ever excited in the ground state and therefore this particular 
problem is easily soluble. The solution is obtained by transforming to reciprocal space, 
where the Hamiltonian becomes: 

M W Long and S Siak 

in terms of the fourier spin components: 

where z = ei(t/z) and c = ( z  + z' ) /Z = cos(k /2) .  The real space constraints that the 
spins are of k e d  length become xk Si, . S,, = S' for the normalization, together 
with S,, . S,, = 0 for the orthogonalization. 

The solution for At.($, 1) corresponds to the quantum solution to the spin 1 chain: 
all the spins pair up in real space with both atoms of each pair being parallel. Each 
neighbouring pair of pairs point in opposite directions. The energy of this spin con- 
figuration is E = JNS2(-1 - X/2), and the spin arrangement is depicted in figure 3. 

Only in the interval Xr(0, i) do we find a more sophisticated solution. For this 
small interval in the vicinity of the Railroad geometry we find an incommensurate 
spiralling solution. The wavevector of the spiral is defined by C = cos k = 2c2 - 1 = 
(A - 1 - X)/(4X) in terms of A' z (1 - X)(1 - 4X). The state stabilized involves two 
degrees of freedom: the spiralling wavevector and the coupling between the two atoms 
which were originally parallel and paired. The physical picture is that of a large relative 
rotation of the two sublattices, which were originally parallel and paired, combined 
with a slow spiralling of the spins along each sublattice. The angle between the two 
sublattices satisfies cos4 = [(l - A)2 - A(1 + X)]/(ZXA) and very quickly increases 
from zero to approximately a right angle. The energy of the corresponding state is 
E = JNS2(A - 1 - X - XA)/(4X). An example of this type of spin configuration is 
also depicted in figure 3. 

For the Railroad geometry itself, the angle between the two paired spins becomes 
precisely half of the spiralling wavevector, 4 = C/2 and with c = -1/4 and C = -7/8. 
The state reduces to a uniform spiral with each atom being equivalent. This spiralling 
solution is depicted in figure 3. The state has energy E = J N 9 ( - 9 / 8 )  which is quite 
similar to the energy of the collinear phase which is stable for larger values of A.  The 
orientations of the spins are very different however, with nearest neighbours being all 
parallel in one case and almost all orthogonal in the other. 

The broken symmetry state, with alternate high and low spin for each bond, is very 
close in energy to the ground state, which leads to interesting quantum behaviour. 
Quantum mechanics prefers parallel spins in the ground state, and we believe that 
quantum fluctuations for the spin 1/2 system extends the range of stability of the 
state corresponding to the spin 1 chain as far as the Railroad geometry. 
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Figure 3. Examples of the classical ground states found for the families of systems 
dexribed in the text. First we picture the state corresponding to the spin 1 chain 
ground state. Second we plot the spiralling solution which takes o w  from the spin 1 
chain ground state. The top row and bottom row form two sublattices which p i n  a 
slow spiral of pitch k', and 6 denotes the relative angle between the two sublattices 
Third we picture the uniform spiral ground state to the Railmad and lastly we picture 
the 120° degree ground state to the Sawtooth. 

2.2. The Railmad uersus the Sawtooth 

The corresponding calculation for this one parameter family of models is very similar to  
the previous case, there being two independent spin degrees of freedom. The system is 
still soluble, although the Sawtooth geometry itself has extra degeneracy and a wealth 
of possible classical ground states. The reciprocal space Hamiltonian is: 

which is readily minimized by a similar uniform spiralling solution to that found for the 
Railroad geometry. The wavevector of the spiral satisfies C = 2cZ - 1 = -l/(Z + 26) 
and the energy of the corresponding solution is E = J N S 2 ( - 2 ( 1  + K ) ~  - 1)/(4+ 4 ~ ) .  

The pitch of this spiral is more dramatic reaching 120' for the Sawtooth geometry 
which has a similar classical ground state to that of the triangular lattice. This state 
is also depicted in figure 3. 

For both classes of system we find classical long range antiferromagnetic order as 
expected. The classical excitations are the spin waves which are slowly precessing 
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fluctuations, perpendicular to the original spin directions, together with spin spirals 
which correspond to a change in pitch for the classical order. 

The competition to be expected at the quantum level is between slow spirals with 
non-collinear spins and the broken symmetry state with alternating high and low spin 
nearest neighbour bonds. In the next section we will try to show that the spiralling 
solutions are never stable for the case of quantum spins and that a state analagous to 
the collinear high-spin low-spin bond alternation remains stable. 

M W Long and S Siak 

3. The quantum limit of spin 1/2 

Of the three fundamental geometries, the Sawtooth, the Railroad and the spin 1 chain, 
only the quantum mechanical version of the Sawtooth is exactly soluble. For periodic 
boundary conditions we find two degenerate ground states, which can  be chosen to 
be the two states for which either all the J ,  bonds are singlet, or all the JI bonds 
are singlet, with all the other bonds necessarily being uncorrelated. This solution 
has none of the properties of the classical solution. There is a broken symmetry in 
the ground state which is completely analagous to the bond alternation found in the 
spin 1 chain. For the Sawtooth we find singlet alternating with uncorrelated bonds, 
while for the spin 1 chain we find triplet alternating with dominantly singlet bonds. 
A purely quantum guess would then suggest that  this broken symmetry might remain 
over the whole parameter range of our investigation, and this is precisely what we are 
suggesting. There is recent discussion of these broken symmetries in the literature [ll]. 
The broken symmetry low-spin ground states go under the generic name of ‘dimer’ 
solutions. 

Figure 4. The two ways of combining nearest neighbours which maintains local 
collinear behaviour. The top picture is stable for the sDin 1 chain, end the lower 
pict- conesponds to the Sawtooth gmund state. 

The fundamental physical principle is that  quantum fluctuations tend to stabilize 
states with locally antiparallel spins [12]. In figure 4 we depict the collinear ground 
state found near the classical limit of the spin 1 chain. The two local possibilities for 
maintaining collinear spins are shown; either the parallel pairs can stay approximately 
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parallel with spin fluctuations occuring between neighbouring pairs, or the pairs can 
split up with the spins in a pair becoming decorrelated and the nearest neighbours 
between pairs becoming locally parallel. The first case is clearly valid near the spin 
1 chain, and the second case exactly describes the Sawtooth ground state. We are 
suggesting that  there is a smooth transition between these two states, with none of 
the spiralling solution found in the classical limit. 

I t  is not possible to exactly solve these spin 1/2 Heisenberg models and so we must 
resort to numerical simulations of small finite systems in order t o  try to  deduce the 
behaviour of the infinite system. Our first problem is to try to deduce whether or not 
there is a broken spatial symmetry in the ground state. 

3.1. Spontaneous broken spatial symmetry 
There is an important physical difference between the spin 1 chain and the Railroad 
geometries. The spin 1 chain has two atoms per unit cell whereas the Railroad only 
has  one. The high-spin low-spin bond alternation is perfectly natural for the spin 1 
chain, but constitutes a spontaneously broken symmetry if true for the Railroad. For 
the Sawtooth geometry there is indeed a spontaneously broken symmetry. The reader 
is directed to an interesting discussion of the relationship between states with only 
short-range correlations and the existence or not of a broken symmetry [13]. 

How might we numerically observe such a broken symmetry? For the Railroad, the 
symmetry breaking would be associated with a degeneracy between the zone centre 
and zone boundary ground states, with the two symmetry broken ground states being 
formed from the sum and difference of the two Bloch states. The symmetry breaking 
itself should then be manifested in the spin correlations of the derived states. There 
are therefore two elements to any such calculation: a total energy analysis of the lowest 
two energy states, and a bond alternation analysis of their sums and differences. 

The total energy analysis for the two relevant states is depicted in figure 5 and 
a finitesize scaling analysis of the bond alternation spin correlations is presented in 
figure 6. The manner in which such an analysis might fail is not immediately obvious, 
and so we have performed the same analysis for the spin chain with nearest neighbour 
interactions. This system has been exactly solved [5], and the behaviour of its spin 
correlations and excitations is well understood: the ground state has full periodicity 
and the lowest lying singlet excitation is at infinitesimal energy. 

If we try to compare the total energy calculations for even membered rings of the 
chain, figure 5(a) ,  and the Railroad, figure 5 ( 6 ) ,  we find little similarity. The chain 
shows very smooth behaviour, with both the ground state and first excited total spin 
singlet state clearly converging to the analytic result. The Railroad on the other hand 
shows quite complicated behaviour. Firstly, the loops with odd and even membered 
pairs of atoms show very different behaviour. Secondly, there is a sort of ‘periodicity’, 
with the two states alternating between the two roles of ground state and first excited 
state. Thirdly, the basic linear behaviour found for the chain does not seem natural, 
and an exponential decay appears a better first guess. 

This rather complicated behaviour can be attributed to the frustration and can 
be partially interpreted in terms of the classical solution. The structure factor has a 
minimum when, cos k, = -1/4, which leads to the classical incommensurate spiralling 
ground state. This special wavevector, ks, also introduces a natural length scale into 
the problem, viz As = (2r)/k, U 3.446, which is the pitch of the spiral. Obviously this 
length has nothing to do with the oscillations, but if we extract out the diference in 
wavevector from the collinear solution, R ,  = cos-’(-1/4) - r/2, then the associated 
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(4  
of the spin 1f2 chain ground state energy and 
the lowest Lying spin 0 excitation energy. In fact 

n .L 1 the= is a spin 1 excitation between the two. The 
infinite chain limit of ( f  - h 2 ) N  has been EX- 

traded and both CUM are seen to converge to 
the new ZCTO. (b) A finite-size sealing calarlation 
of the lowest two states of the Railroad geometry 
for even membered chains. Both states are totd 
spin singlet. One state is at the zone centre and 
the other is at the zone boundary. An approx- 
imate infinite chain limit of -0.486N has been 
extracted and the CUTITS all appear to converge 
to the new zero. ( c )  The corresponding analysis 
to (b) for the odd membered chains. The limit 
no longer appears to be %em, although it does 
appear to be below 0.25. 

length, A, = ( 2 1 ~ ) / k ~  - 24.866, is the right order of magnitude. We suggest that these 
oscillations are the residual effects of the finite loop length interfering with the length 
scale, A,. 

We believe that the fact that loops with odd and even membered pairs behave in 
significantly different ways is probably the best evidence that the system has broken 
spatial symmetry. The only way for us to interpret this fact is in terms of the solution 
to the spin 1 chain. If the symmetry is broken and nearest neighbour bonds become 
alternately high-spin and lowapin, then the resulting chain of approximately antipar- 
allel pairs, is frustrated when there is an odd number of pairs and ‘bipartite’ when 
there is an even number. 

If we return to the broken symmetry, then it seems clear that the two relevant 
states will become degenerate for the infinite chain, satisfying the first requirement. 
Now let us address the question of the spin correlations and whether they exhibit an 
order parameter. 

The nearest neighbour spin correlations for the symmetry broken state, which is 
not an eigenstate except in the infinite chain limit, are finitesize scaled in figure 6. 
The limiting behaviour of the chain is analytically known and included for emphasis. 
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Figure B. A hite-size scaling of thenearest neighbourspin-spin codatiom for the 
symmetry broken ground states of both the spin 112 chain, plus- and s t m ,  and the 
Railroad, cmsss and circls. The crosses and plusees denote the two valuer of the 
correlations and the s t m  and circles denote the difference. The infulite limit of the 
spin 112 chain has been included. The two system appear lo  behave in significantly 
different ways. 

Although it is plausible that the points plotted are consistent with the analytic limits, 
the finite-size scaling analysis would not be compelling on its own. We should point 
out that the chain is probably a very stringent test for the analysis, because the decay 
properties of the spin correlations show power law behaviour which is likely to show 
smooth changes on all length scales. 

The behaviour of the same correlations on the Railroad geometry show completely 
different characteristics. The two spin correlations on neighbouring bonds appear to 
converge to different limits. Although the chain suggests that the scaling might be am- 
biguous, a careful study of the curvature of the relevant plots suggests that the limits 
are distinct, unless there is a dramatic change of behaviour on an as yet undiscovered 
length scale. One bond appears to converge to a domin.antly triplet configuration, - 85%, and the other bond to a dominantly singlet configuration, - 60%. 

It is our belief that the convergence properties of the Railroad are ezponential 
and therefore that the finite-size scaling calculations are to be believed. The reason 
for our belief in a finite correlation length comes from our related belief in a gap to 
excitations. We will examine the numerical evidence for a gap in the next subsection, 
but one piece of evidence is presented in figure 5(c), where we find that ground states 
of the odd length loops appear to  converge to a different limiting energy than for the 
even length chains. 

We would like to point out that we  have in this paper an example of a system 
which exhibits a rather unusual form of long-range order. The presence of the broken 
symmetry and the corresponding order parameter indicates the existence of long range 
order, but not necessarily long range magnetic order. There can be long range order 
in this system in the absence of long range spinspin correlations. Although the atoms 
separate into dominantly parallel pairs, there is no requirement for order amongst the 
resulting triplets. Indeed, the spin 1 chain suggests that any such long range magnetic 
coherence is unlikely. 
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5.2. A gap t o  ezcifations? 

There is a fairly widespread belief, that a magnetic order parameter leads to excita- 
tions at low energies and further that a lack of magnetic order leads to a gap in the 
low energy spectrum. The first result is fairly easy to motivate, in terms of ‘Goldstone 
Modes’ and small fluctuations in the order parameter, but the second is more mys  
terious. For magnetic systems the low energy excitations are ‘Spin Waves’ and ‘Spin 
Spirals’. One of the easiest quantities to numerically analyse is the existence of a low 
energy gap to excitations and we now perform such an investigation. A non-zero gap 
indicates to us a lack of long range order. 

M W Long and 5 Siak 

o,n t 
Figure 7. The ‘gap’ to the lowest lyingspin 1, crosses, and spin 0, circles, excitations. 
W e  have plotted the ‘gaps’ for both sone centre and wne boundary stales. There is 
no clear limit, but it se- natural to expect a l i t  or above 0.23. 

In figure 7 we finite-size scale the lowest lying spin 1 excitations, which would 
naively be interpreted as Spin Waves, together with the lowest lying spin 0 excitations, 
which would naively be interpreted as Spin Spirals [14]. A brief study of the spin-spin 
correlations suggests that this interpretation is acceptable for the spin 1 excitations, 
which have similar correlations to the ground state, but the spin 0 excitations also 
have similar correlations to the ground state. The fact that there are two low energy 
‘ground states’ leads to a problem in defining the ‘gap’ to excitations for finite systems, 
We have elected to calculate the gap to excitations at fized Bloch momentum. This 
choice ensures a smoofh variation as a function of size, but prohibits any ‘absoluteness’ 
since half of the states have the gap between the two ground states omitted. 

The quantities calculated show a similar type of oscillation to  the ground state 
energies. There is no clear evidence for a gap, but it is easiest to believe that the 
curves are tending to a limit which is larger than - 0.25. 

The second piece of evidence for a gap to excitations comes from the odd loop total- 
energy calculations depicted in figure 5(c ) .  These total energies have had the same 
infinite chain limit subtraction which made the even membered loops tend towards zero 
energy. It seems likely that the odd loops possess an extra energy of approximately 
0.25. An odd loop necessarily has  a half integral total spin. The ground state has 
total spin 1/2, and this extra spin 1/2 can be interpreted as an excitation. The 
odd membered loop calculation then suggests that there is a gap of - 0.25 to this 
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excitation. If we assume that the pairing into nearest neighbour triplets still occurs 
for odd loops, then the extra or ‘free’ spin, which remains unpaired, acts both as 
a domain wall between two regions which pair out of phase, and simultaneously is 
the spin 1/2 excitation. This is a very natural interpretation for the excitation, as a 
domain wall carrying spin 1/2, an explanation which is certainly true for the Sawtooth 
geometry [15]. 

Our inability to make a clean finite-size scaling of the proposed energy gap is 
probably due to the fact that the system is topologically frustrated. This allows subtle 
variations in behaviour to compensate for minor changes in boundary conditions, and 
hence slow convergence in behaviour which is controlled by rather small energies. Due 
to the difficulties encountered in making sense of this scaling, it has not proved useful 
to extend our investigation of excitations to the one parameter families of systems. 
However we have made a brief comparison of the ground state to the one parameter 
families of systems. 

9.9. Quantum comparisons for the Railroad 

In trying to compare the three fundamental geometries, we have two major options. 
The natural comparison involves using the family of systems defined by the param- 
eters X and 6 ,  but we can also compare the states directly. The basic problem is 
that numerical work involves finitesize scaling. A direct comparison involves a pure 
scaling analysis, but an investigation of a one-parameter family entails the study of 
a finite-size scaled quantity. For the present frustrated systems, scaling is neither 
straightforward nor accurate, and the variation in the wey the system scales makes 
any such calculation suspect. We will attempt to scale the symmetry breaking spin 
correlations for the family of systems, but first we will make a direct comparison of 
the finite system ground states. 

In figure 8 we plot a finitesize scaling of the square of the overlap between the 
Railroad ground state and the other two ground states. As well as the probability 
that the Railroad ground state is the ground state to the other Hamiltonians, we plot 
some correlation functions for comparison. The point to the extra correlations plotted 
is that the spin 1 chain ground state, IX), and the symme1,ry broken Sawtooth ground 
state, IS), satisfy: 

where the pairs {ii’} are m y  combination of the bonds which are triplet, for the spin 
1 case, and singlet for the Sawtooth case. All of these pair operators are projection 
operators and so the overlaps presented could equally have been calculated with the 
projected Railroad ground state. The calculations plotted correspond to the sequence 
of probabilities that an increasing number of consecutive pairs have a fixed total spin. 
For the spin 1 chain it is the probability of finding consecutive spin triplets while for 
the Sawtooth it is the probability of finding consecutive spin singlets. These calcu- 
lations demonstrate that the likelihood of finding neighbouring pairs with different 
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Figure 8.  A finitesize scaling of the square of the overlaps between the symmetry 
broken ground state of the Railroad geometry and: (a) the spin 1 chain ground state; 
( 6 )  the Sawtooth ground state. The cirde denote the squares of the overlaps and 
the plusses denote the sequence of pmbabilitities that a m w  of ccnsecutive pairs each 
have the same total spin. For the Sawtooth, if d bar one pair are singlet, ihen the 
final pair is necessarily singlet. ALo for the Sawtooth. if all the pairs are singlet, then 
we frnd a Sawtooth ground state. We have also plotted the q u m s  of the 4VRlapS 
between the Bloch eigenrtates of the RBilroad with the corresponding symmetric 
eigmststes of the Sawtooth, denoted hy mosses. 

total spins is fairly random in the Railroad ground state. It also shows that the dom- 
inant differences between the relevant states are the local spin correlations and not 
the longer range correlations. 

The ground state to the spin 1 chain is very similar to the symmetry broken 
solutions to the Railroad for these small systems. There are two possible sources of 
difference; firstly when pairs cease to be in local triplet configurations and secondly 
if the triplets were to show different local spin correlations. It seems likely that the 
dominant effect is the loss of the local triplet configurations at this small cluster size. 

The ground state to the Sawtooth is also similar to the Railroad, but not as similar 
as the spin 1 chain ground state. Once again there are two possible differences, with 
the dominant effect being the loss of local singlet correlations. For this comparison 
the loss of singlet correlations is large. 

It is important not to try to carry this comparison too far. Although for these 
small clusters the dominant difference is theshort range correlation associated with the 
symmetry breaking order parameter, the correlation length of the antiferromagnetic 
correlations is quite different for the three systems. For the spin 1 chain there is a 
correlation length of - 5-7 pairs of atoms [6] while for the Sawtooth the correlation 
length is only one pair of atoms. For the Railroad, the correlation length is somewhere 
between these two values, although we have been unable to calculate this length 
accurately. For the longer chains these correlation lengths will play a role in any 
comparison. 

Our final calculation is of the symmetry breaking order parameter across our 
single parameter families of systems. For the family connecting the spin 1 chain 
to the Railroad, the high-spin low-spin bond alternation is natural and occurs in 
the unique ground state. For the family connecting the Sawtooth to the Railroad, 
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Figure 9. A calculation of the nearest neighbour spin-spin correlations acms o w  
two families of systems for a sixteen atom loop. The left MI is as a function of 
K, taking us from the Sawtooth to the Railrad. 3he right half is as a fundion of 
1 + X taking US from the Railroad to the spin 1 chain. The circles and plusses denote 
the symmetry broken ground states and the mscs and stars denote the symmetric 
ground States. For all system t h m  is dearly a large difference between the two 
possible spin correlations. 

4. Conclusions 

It is our belief that there is a natural progression of ground states from the spin 1 chain 
through the Railroad geometry to the Sawtooth geometry. We believe that there is a 
symmetry breaking with nearest neighbour bonds alternating between high and low 
spin throughout the sequence. Between the Railroad and Sawtooth, this constitutes 
sponfaneow symmetry breaking. We believe further that all the systems have a gap 
to excitations with the value of the gap varying between U 0.45 for the spin 1 chain 
to - 0.25 for the Sawtooth. Connected to the existence of a gap, we believe that all 
the systems have a finite magnetic correlation length, which varies from about 5 - 7 
pairs of atoms for the spin 1 chain down to less than one pair for the Sawtooth. The 
best measure for the change in ground state as we move smoothly between systems 
seems to be the nearest neighbour spin correlation which varies between parallel for 
the spin 1 chain to uncorrelated for the Sawtooth. 



4914 M W Long and S SIaL 

On a more general level, we believe that for spin 1/2 systems, any incommensurate 
or non-collinear phase predicted by the classical limit is unlikely to be the quantum 
ground state, although the actual nature of the ground state remains a mystery to us. 

Our numerical evidence for the picture just presented is very patchy. The strongest 
evidence is for the spontaneous symmetry breaking. The difference between the spin 
correlations on neighbouring bonds appears to converge to a well defined non-zero 
limit for both families of systems studied, although the spin 1/2 chain, which we know 
is translationally invariant in the infinite loop limit, does not clearly limit to zero. 
The actual behaviour of the spin 1/2 chain remains unresolved by our numerical work 
but the convergence is clearly compatable with the analytic solution. Our results are 
suggestive but prove nothing. 

The similarity between the spin 1 chain ground state and the Railroad ground state 
is quite surprising. For example, with 24 atom, the probability that the symmetry 
broken Railroad ground state actually is the spin 1 chain ground state is above 1/4. 
The low lying excitations are not particularly similar however. 

The Sawtooth geometry is soluble [8] and has the same spatial broken symmetry 
that we are proposing for the Railroad. The existence of two degenerate ground 
states allows the possibility of a domain wall excitation. Domain walls, although 
admittedly of two distinct varieties, constitute the gapped low energy spectrum of the 
Sawtooth 1151. The short range character of the spin correlations does not seem to 
allow ‘Spin Wave’ like solutions. 

For the Railroad geometry, the two degenerate ground states remain, also per- 
mitting domain wall excitations. The odd loop calculations are best interpreted in 
this way and these domain walls are probably gapped, although the numerical work 
is inconclusive. The spin-spin correlation length for this system is larger, and this 
allows the possibility of ‘Spin Wave’ like excitations. For the analytically solved spin 
1/2 chain, domain walls form the lowest lying excitations, but two domain walls bind 
to form a ‘local’ spin 1 ‘Spin Wave’ excitation 1141. This interpretation appears to 
successfully apply to the Railroad, where the spinspin correlations remain virtually 
unaffected for the lowest lying spin 1 excitation, indicating that it is ‘local’. Strangely, 
however, even the lowest lying spin 0 excitations behave in this way, suggesting a sim- 
ilar rather implausible interpretation for them. It is probable that our clusters are 
simply too small to isolate the true nature of the excitations. 

The possibilities for the spin 1 chain are rather different. There is no longer a 
ground state degeneracy and therefore no possibility of spin 1/2 domain walls. Indeed, 
this result can be rigorously proven. Only the ‘Spin Wave’ like excitations remain, 
although Spin Spirals for the triplet pairs become a possibility. The character of the 
excitations must change somewhere between the spin 1 chain and the Sawtooth, even 
though the ground states are remarkably similar. 

Using the classical limit as motivation, we have suggested that the spin 1 chain 
and Railroad geometries behave in a similar way, An understanding of this behaviour 
may prove useful. The fundamental understanding that we seek is that of the role 
of quantum fluctuations in systems with spin 1/2 atoms. For both perovskite super- 
conductors and heavy fermions, a single electron often carries the whole spin of an 
atom, and exchange is therefore a quantum effect. The way quantum fluctuations 
break down the magnetic order, replacing it with short range singlets, may be an 
interpretational aid for these more physical systems. 
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